Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(31): 8742-8756, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328746

RESUMO

Light-induced electron-transfer reactions were investigated in wild-type and three mutant Rhodobacter sphaeroides reaction centers with the secondary electron acceptor (ubiquinone QA) either removed or permanently reduced. Under such conditions, charge separation between the primary electron donor (bacteriochlorophyll dimer, P) and the electron acceptor (bacteriopheophytin, HA) was followed by P+HA- → PHA charge recombination. Two reaction centers were used that had different single amino-acid mutations that brought about either a 3-fold acceleration in charge recombination compared to that in the wild-type protein, or a 3-fold deceleration. In a third mutant in which the two single amino-acid mutations were combined, charge recombination was similar to that in the wild type. In all cases, data from transient absorption measurements were analyzed using similar models. The modeling included the energetic relaxation of the charge-separated states caused by protein dynamics and evidenced the appearance of an intermediate charge-separated state, P+BA-, with BA being the bacteriochlorophyll located between P and HA. In all cases, mixing of the states P+BA- and P+HA- was observed and explained in terms of electron delocalization over BA and HA. This delocalization, together with picosecond protein relaxation, underlies a new view of primary charge separation in photosynthesis.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Transporte de Elétrons , Cinética , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Mutação Puntual , Recombinação Genética , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
2.
Opt Express ; 28(15): 22524-22539, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752512

RESUMO

We report a thorough study of InGaN quantum wells spatially modified by varying the local misorientation of the GaN substrate prior to the epitaxial growth of the structure. More than 25 nm shift of emission wavelength was obtained, which is attributed to indium content changes in the quantum wells. Such an active region is promising for broadening of the emission spectrum of (In,Al,Ga)N superluminescent diodes. We observed that the light intensity changes with misorientation, being stable around 0.5° to 2° and decreasing above 2°. This relation can be used as a base for future device designing.

3.
Photosynth Res ; 144(2): 235-245, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32114649

RESUMO

Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with a ~ 24-ps lifetime, as measured both by time-resolved fluorescence and transient absorption. The same PSI particles deposited in mesoporous matrix made of TiO2 nanoparticles exhibit significantly accelerated excitation decay dominated by a ~ 6-ps component. Target analysis indicates that this acceleration is caused by ~ 50% increase of the rate constant of bulk Chls excitation quenching. As an effect of this increase, as much as ~ 70% of bulk Chls excitation is quenched before the establishment of equilibrium with the red Chls. Accelerated quenching may be caused by increased excitation trapping by the reaction center and/or quenching properties of the TiO2 surface directly interacting with PSI Chls. Also properties of the PSI red Chls are affected by the deposition in the TiO2 matrix: they become deeper traps due to an increase of their number and their oscillator strength is significantly reduced. These effects should be taken into account when constructing solar cells' photoelectrodes composed of PSI and artificial matrices.


Assuntos
Complexo de Proteína do Fotossistema I/química , Synechocystis/química , Titânio/química , Clorofila/química , Detergentes/química , Fluorescência , Cinética , Complexo de Proteína do Fotossistema I/metabolismo , Espectrometria de Fluorescência/métodos
4.
J Phys Chem B ; 120(22): 4890-6, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27171418

RESUMO

Ongoing questions surround the influence of protein dynamics on rapid processes such as biological electron transfer. Such questions are particularly addressable in light-activated systems. In Rhodobacter sphaeroides reaction centers, charge recombination or back electron transfer from the reduced bacteriopheophytin, HA(-), to the oxidized dimeric bacteriochlorophyll, P(+), may be monitored by both transient absorption spectroscopy and transient fluorescence spectroscopy. Signals measured with both these techniques decay in a similar three-exponential fashion with lifetimes of ∼0.6-0.7, ∼2-4, and ∼10-20 ns, revealing the complex character of this electron transfer reaction. In this study a single kinetic model was developed to connect lifetime and amplitude data from both techniques. The model took into account the possibility that electron transfer from HA(-) to P(+) may occur with transient formation of the state P(+)BA(-). As a result it was possible to model the impact of nanosecond protein relaxation on the free energy levels of both P(+)HA(-) and P(+)BA(-) states relative to that of the singlet excited state of P, P*. Surprisingly, whereas the free energy gap between P* and P(+)HA(-) increased with time in response to protein reorganization, the free energy gap between P* and P(+)BA(-) decreased. This finding may be accounted for by a gradual polarization of the protein environment which stabilizes the state P(+)HA(-) and destabilizes the state P(+)BA(-), favoring productive charge separation over unproductive charge recombination.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Transporte de Elétrons , Feofitinas/química , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Espectrometria de Fluorescência , Termodinâmica
5.
Phys Chem Chem Phys ; 11(44): 10484-93, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19890535

RESUMO

Global analysis of a set of room temperature transient absorption spectra of Rhodobacter sphaeroides reaction centers, recorded in wide temporal and spectral ranges and triggered by femtosecond excitation of accessory bacteriochlorophylls at 800 nm, is presented. The data give a comprehensive review of all spectral dynamics features in the visible and near UV, from 330 to 700 nm, related to the primary events in the Rb. sphaeroides reaction center: excitation energy transfer from the accessory bacteriochlorophylls (B) to the primary donor (P), primary charge separation between the primary donor and primary acceptor (bacteriopheophytin, H), and electron transfer from the primary to the secondary electron acceptor (ubiquinone). In particular, engagement of the accessory bacteriochlorophyll in primary charge separation is shown as an intermediate electron acceptor, and the initial free energy gap of approximately 40 meV, between the states P(+)B(A)(-) and P(+)H(A)(-) is estimated. The size of this gap is shown to be constant for the whole 230 ps lifetime of the P(+)H(A)(-) state. The ultrafast spectral dynamics features recorded in the visible range are presented against a background of results from similar studies performed for the last two decades.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Análise Espectral/métodos , Elétrons
6.
J Phys Chem B ; 113(31): 11023-31, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19603803

RESUMO

We report the observation of two conformational states of closed RCs from Rhodobacter sphaeroides characterized by different P(+)H(A)(-) --> PH(A) charge recombination lifetimes, one of which is of subnanosecond value (700 +/- 200 ps). These states are also characterized by different primary charge separation lifetimes. It is proposed that the distinct conformations are related to two protonation states either of reduced secondary electron acceptor, Q(A)(-), or of a titratable amino acid residue localized near Q(A). The reaction centers in the protonated state are characterized by faster charge separation and slower charge recombination when compared to those in the unprotonated state. Both effects are explained in terms of the model assuming modulation of the free energy level of the state P(+)H(A)(-) by the charges on or near Q(A) and decay of the P(+)H(A)(-) state via the thermally activated P(+)B(A)(-) state.


Assuntos
Proteínas de Bactérias/análise , Complexo de Proteínas do Centro de Reação Fotossintética/análise , Rhodobacter sphaeroides/química , Proteínas de Bactérias/isolamento & purificação , Cinética , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Conformação Proteica , Prótons
7.
Biophys J ; 88(3): 1959-69, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15653744

RESUMO

EET in reconstituted Lhca4, a peripheral light-harvesting complex from Photosystem I of Arabidopsis thaliana, containing 10 chlorophylls and 2 carotenoids, was studied at room temperature by femtosecond transient absorption spectroscopy. Two spectral forms of Lut were observed in the sites L1 and L2, characterized by significantly different interactions with nearby chlorophyll a molecules. A favorable interpretation of these differences is that the efficiency of EET to Chls is about two times lower from the "blue" Lut in the site L1 than from the "red" Lut in the site L2 due to fast IC in the former case. A major part of the energy absorbed by the "red" Lut, approximately 60%-70%, is transferred to Chls on a sub-100-fs timescale from the state S(2) but, in addition, minor EET from the hot S(1) state within 400-500 fs is also observed. EET from the S(1) state to chlorophylls occurs also within 2-3 ps and is ascribed to Vio and/or "blue" Lut. EET from Chl b to Chl a is biphasic and characterized by time constants of approximately 300 fs and 3.0 ps. These rates are ascribed to EET from Chl b spectral forms absorbing at approximately 644 nm and approximately 650 nm, respectively. About 25% of the excited Chls a decays very fast-within approximately 15 ps. This decay is proposed to be related to the presence of the interacting Chls A5 and B5 located next to the carotenoid in the site L2 and may imply some photoprotective role for Lhca4 in the photosystem I super-complex.


Assuntos
Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/análise , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema I/análise , Complexo de Proteína do Fotossistema I/química , Proteínas de Ligação à Clorofila , Relação Dose-Resposta à Radiação , Cinética , Luz
8.
Biophys J ; 80(4): 1617-30, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11259277

RESUMO

Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation.


Assuntos
Elétrons , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/química , Spinacia oleracea/química , Radicais Livres , Cinética , Modelos Químicos , Modelos Teóricos , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II , Espectrometria de Fluorescência , Spinacia oleracea/fisiologia , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...